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An Introduction to
Deformation Quantization

M. Hibat Allah

Deformation quantization (quantum mechanics in phase space) is an interesting
formulation of quantummechanics as it provides a natural way to recover classical
mechanics in the limit ~ → 0, while such a limit is not rigorous in the scope of
the correspondence principle. In addition, one can show that the predictions of
deformation quantization and of the standard formulation of quantum mechanics
are the same as we shall see in this article. Interestingly enough, this formulation
also provides a very natural framework to encode the possible non-commutative
behavior of space at the Planck scale where gravity and the laws of quantum
mechanics are both expected to be applicable.

1. Introduction
Since the discovery of the laws of quantum me-

chanics, several formulations and interpretations
have been put forward. The standard one, called
the canonical formulation, which was developed
by Heisenberg, Schrödinger and Dirac, is based
on operators that act on a Hilbert space. It pos-
tulates that classical observables such as position
q and momentum p can be promoted to operators
(Q̂ and P̂ ) acting on a Hilbert space while mak-
ing a correspondence between the classical Pois-
son bracket {., .} and the commutator of opera-
tors [., .] in such a way that the Poisson bracket
can be restored in the classical limit ~→ 0, i.e.

lim
~→0

1
i~

[Â, B̂]=̂ {A,B} , (1)

where Â and B̂ are quantum observables (op-
erators) and A and B are their classical counter-
parts.
Another formulation is the path-integral ap-

proach, which was motivated by Dirac and elab-
orated by Feynman. This approach assumes that

the probability amplitude 〈f |i〉 for a particle to
make a transition from some initial state |i〉 to
some final state |f〉 can be obtained by sum-
ming over all possible classical configurations that
interpolate between |i〉 and |f〉. This can be,
roughly speaking, expressed in the following form:

〈f |i〉 ∝
∑

all paths
exp

(
i

~
S

)
, (2)

where S =
´
Ldt is the classical action associated

to the Lagrangian L of the particle. The equiva-
lence between this formulation and the canonical
formulation has been intensively studied.1
A third formulation, the bronze medal,2 is given

by the phase space formulation or deformation
quantization whose pioneers are Wigner, Weyl,
Groenewold and Moyal. The main advantage of
this formulation, as we shall see in the follow-
ing section, is the fact that it provides a natu-
ral framework for the transition from the classi-
cal Hamiltonian formalism which relies on phase
space coordinates (q, p) to quantum mechanics in
phase space. We will also see how this formulation
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gives a natural framework for the transition from
Poisson brackets to commutators (Equation 1),
which is only postulated and somewhat obscure
in the correspondence principle within the first
formulation.
We then show how classical mechanics can be

smoothly generalized to a formulation of quantum
mechanics in phase space (Section 2). Some sim-
ilarities with the canonical formulation of quan-
tum mechanics are mentioned and we shall see
some examples where this new formulation gives
exactly the same results as the canonical formu-
lation. Finally, we argue that space can be non-
commutative at the Planck scale and we show how
deformation quantization applied to space can be
used to modify the Schrödinger equation in the
case of a non-commutative space (Section 3).

2. Quantum mechanics as a
deformation theory

The main difference between quantum mechan-
ics and classical mechanics is the Heisenberg un-
certainty relation, which is a natural consequence
of the non-commutativity of position and momen-
tum operators, i.e. [X̂, P̂ ] = i~1. This observa-
tion suggests that the commutative product of
classical observables has to be replaced with a
non-commutative product in order to account for
the non-commutativity between quantum observ-
ables.

2.1. Short review of classical mechanics
It is useful given the above context to review

the Hamiltonian formalism in classical mechan-
ics, since deformation quantization is a natural
generalization of classical mechanics.
In classical mechanics, functions depend on

phase space coordinates which are usually de-
noted by (q,p) in the literature. If we take two
functions f and g, they can be multiplied using
the ordinary commutative product “·”, i.e.

f(q,p) · g(q,p) = g(q,p) · f(q,p) .

However, in the classical Hamiltonian formu-
lation, there is another way to combine two
functions using the so-called canonical Poisson
bracket {., .} defined as follows:

{f, g} ≡
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (3)

From this definition, one deduces the canon-
ical commutation relation {qi, pj} = δij which
is further promoted in the quantum case to
[Q̂i, P̂j] = i~δij1 using the correspondence prin-
ciple of the canonical formulation. It is also clear
that the Poisson bracket (Equation 3) of two func-
tions is non-commutative (anti-symmetric under
the exchange of f and g). This property will be
essential to construct another non-commutative
operation between classical observables in the
phase space, as we will see in the next subsec-
tion.
In order to simplify the expression of the Pois-

son bracket (Equation 3), we shall use this nota-
tion:

f
←−
∂qi
g = ∂f

∂qi
g, f

−→
∂pi
g = f

∂g

∂pi
, ∂q∂p =

N∑
i=1

∂

∂qi

∂

∂pi
.

(4)
Hence, this expression can be rewritten in a

simple manner which will be useful later:

{f, g} = f(←−∂q
−→
∂p −

←−
∂p
−→
∂q)g. (5)

Another useful way to express the canonical
Poisson bracket is by using the Poisson tensor

(ΘIJ) =
(

0 IN
−IN 0

)
. One can then write the

Poisson bracket as follows:

{f, g} (x) = f(ΘIJ←−∂I
−→
∂J)g , (6)

where ∂If ≡ ∂f/∂xI and x ≡ (x1, ..., x2N)
≡ (q,p). Here and in the following, the Ein-
stein summation convention over repeated indices
is assumed, with the summation indices i, j lying
within the range J1, NK and the indices I, J tak-
ing values within the interval J1, 2NK.
If we assume that the dynamics of a classi-

cal physical system is described by a Hamilto-
nian function H(q,p), the equations of motion in
terms of the phase space coordinates are given by
the Hamilton equations:

q̇i = ∂H

∂pi
= {qi, H} , ṗi = −∂H

∂qi
= {pi, H} .

(7)
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Using the chain rule, we can show that the time
evolution equation, for any classical observable
f(x) on the phase space, is given by

ḟ = {f,H} . (8)

2.2. Deformation of the usual product
In the framework of deformation quantization,

there is no sudden break when the transition
from classical mechanics to quantum mechanics
is made. The upshot is that an observable in de-
formation quantization is described by the same
function on phase space as its classical coun-
terpart, e.g. the Hamiltonian function H(q,p),
where we encode its quantum behavior using a
non-commutative product which will be defined
in this section.
Let us consider two smooth functions f and

g on phase space which will be later identified
to quantum observables. One can define a non-
commutative operation “∗” called the star prod-
uct, which involves the Poisson bracket of the two
functions as follows:

f ∗ g = f · g + i~
2 {f, g}+O(~2) , (9)

where the parameter ~ is identified with the
Planck constant. The term O(~2) is needed
to insure the associativity of this operation.
From this definition, one can see that the star
product is non-commutative and that the non-
commutativity is a result of a smooth defor-
mation of the usual product with a small non-
commutative term at the order of ~. Hence,
this definition justifies the name of “deformation”
quantization. Using the previous result (Equa-
tion 9), we can define a ∗-commutator of two
phase space observables f and g in the following
way:

[f, g]∗ ≡ f ∗ g − g ∗ f = i~ {f, g}+O(~2) , (10)

where the last equality follows from the definition
of the star product (9).
At this point, one can clearly see the relation

between the Poisson bracket (Equation 3) and the
quantum commutator which is defined here as a ∗-
commutator (Equation 10). Interestingly enough,
the classical limit (Equation 1) can be verified by
using the definition of the ∗-commutator, i.e.

lim
~→0

1
i~

[f, g]∗ = {f, g} . (11)

In other words, we can naturally recover classi-
cal mechanics in the limit ~ → 0. Moreover, the
quantum observables can be identified with their
classical counterpart functions on phase space,
the only difference here is that the usual com-
mutative product of these functions is replaced
by a non-commutative star product.
Note that within the first formulation of quan-

tum mechanics, the classical limit has to be en-
forced by the correspondence principle. However,
in the scope of deformation quantization, there
is no such break as the transition is done in a
natural way (Equation 11).
The expression of the star product to all orders

of ~ is given by the Groenewold-Moyal product
“∗M”3–6 by exponentiating the first term of the
star product (Equation 9) as follows:

f ∗M g = f exp(i~2 (←−∂q
−→
∂p −

←−
∂p
−→
∂q))g

= f exp(i~2 ΘIJ←−∂I
−→
∂J)g.

(12)

An important consequence of this definition is
the emergence of non-locality which is a feature
of quantum mechanics. One can see that its pres-
ence is implicit since the previous equation in-
volves not only the values of the functions, but
also their derivatives to arbitrary high orders.
The careful reader may wonder whether we are

allowed to use the phase space coordinates as a
label for observables, since the Heisenberg uncer-
tainty relation must be verified. In fact, this
is permitted within the present formulation as
the uncertainty relation is encoded in the star
product.7
In addition, one can deduce a simple expres-

sion, called the shift formula, of the Groenewold-
Moyal star product (12) which will be very useful
for the resolution of the Hamiltonian eigenvalue
problems:

(f ∗M g)(x) = f(x− p̃

2 )g, (13)

where p̃I ≡ ΘIJ(−i~∂J). As the Taylor expansion
implies f(x + a) = exp(a∂x)f(x), we can take
a = p̃/2 and use the last expression of the Taylor
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expansion. This allows to rewrite the shift for-
mula from Equation 13 in a more concrete man-
ner:

(f ∗M g)(q,p) = f(q + i~
2 ∂p,p−

i~
2 ∂q)g(q,p).

(14)

2.3. Principles of deformation quantiza-
tion
2.3.1. The phase space wave function

In the canonical formulation of quantum me-
chanics, a state is described by a vector |Ψ〉 in
a Hilbert space. The analog of such states in
the phase space formulation are functions defined
on the phase space which can be associated to a
quantum state |ψ〉 using the Wigner functions8
(Equation 15).

ρψ(q,p) = 1
(2π~)N

ˆ
RN

dy ψ(q − 1
2y)ψ(q + 1

2y)e
i
~y.p

= 1
(2π)N

ˆ
RN

dy ψ(q − ~
2y)ψ(q + ~

2y)eiy.p.

(15)

One can easily verify that the Wigner func-
tion is normalized, i.e.

´
R2N dqdp ρψ(q,p) = 1,

and real-valued. For the sake of clarity, we will
now describe the analogies between the canoni-
cal formulation and the phase space formulation
to show the important relations and quantities of
the phase space formulation.

2.3.2. Analogies

In the phase space formulation, an eigenstate,
denoted by Πn(q,p) corresponds to an eigen-
state |ψn〉 of the canonical formulation, i.e. the
phase space eigenstate Πn(q,p), referred to as
a ∗-eigenfunction, is defined as a Wigner func-
tion associated to the eigenstate |ψn〉. This im-
plies that Πn is normalized and real-valued. Note
that here, n is only a label to enumerate the ∗-
eigenfunctions Πn.
The two formulations have a lot of similarities

(Table 1). In addition, one can derive an ana-
logue for the Ehrenfest evolution (Equation 8) of
classical observables in the following way:

d 〈k〉
dt = 1

i~
〈[k,H]∗〉 , (16)

where “[., .]∗” is the star commutator (Equa-
tion 10). The expectation value of a classical ob-
servable k(q,p) for a system described by a phase
space state ρ(q,p) is given by9

〈k〉 =
ˆ
R2N

dqdp k(q,p)ρ(q,p). (17)

Finally, it should be noted that the main dif-
ference between the two formulations is the fact
that the ∗-eigenfunctions Πn are also ∗-projectors
(Table 1), which is clearly not the case in the
canonical formulation.

2.4. Examples
We now have the necessary tools for tackling

some concrete examples, which have been already
solved in the canonical formulation. In this sec-
tion, we will try to illustrate this point by solv-
ing two basic problems in quantum mechanics: a
free particle and a harmonic oscillator in a one-
dimensional space.9

2.4.1. Free particle

A free particle can be defined as a particle mov-
ing in a constant potential where the latter can be
shifted to zero. In this case, the classical Hamil-
tonian of such a particle reduces to the kinetic
term as follows:

H(q, p) = p2

2m. (18)

According to the canonical formulation, the
energy eigenvalues of the Hamiltonian operator
Ĥ = p̂2/2m are given by E = p2/2m. The latter
corresponds to a non-localized particle with a def-
inite momentum p. In order to recover this result
in the phase space formulation, we shall solve the
∗-eigenvalue problem (H ∗M Π)(q, p) = E Π(q, p)
analogously to the eigenvalue problem in the
canonical formulation.
Using the shift formula ( Equation 14), the ∗-

eigenvalue problem can be reduced to the follow-
ing equation:

1
2m

(
p− i~2∂q

)2

Π = EΠ, (19)

hence:

1
2m

(
p2 − i~p∂q −

~2

4 ∂
2
q

)
Π = EΠ. (20)
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Canonical QM Phase space QM
State |ψ〉 Wigner function ρψ
Eigenstate |ψn〉 ∗-Eigenfunction Πn(q,p)
Eigenvalue equa-
tion

Ĥ |ψn〉 = En |ψn〉 ∗-Eigenvalue equa-
tion

(H ∗ Πn)(q,p) = EnΠn(q,p)

Projector P̂n = |ψn〉 〈ψn| ∗-Projector Πn(q,p)
Orthonormality P̂nP̂n′ = δn,n′P̂n ∗-Orthonormality (Πn ∗ Πn′)(q,p) = δn,n′Πn(q,p)
Completeness ∑

n P̂n = 1 ∗-Completeness ∑
n Πn = 1

Spectral decom-
position

Ĥ = ∑
nEn |ψn〉 〈ψn| ∗-Spectral decom-

position
H(q,p) = ∑

nEnΠn(q,p)

Tab. 1 Summary of the analogies between the canonical formulation and the phase space formulation. n is
regarded as a label for the eigenstates (∗-eigenfunctions), it can be either discrete or continuous.

Since Π is a real-valued function, as suggested
by the definition, the imaginary part of the reac-
tion verifies:

∂qΠ = 0, (21)
and the real part verifies:(

p2

2m − E
)

Π = 0. (22)

Therefore, the energy eigenvalues are given by
E = p2/2m, which is exactly the result found in
the case of the canonical formulation. In fact, the
imaginary part result can already be anticipated
(Equation 15) since the wave function ψ(q) of a
free particle is delocalised in space.
Now, in order to study a system with discrete

energy eigenvalues, we shall consider a non-zero
potential energy which will be the case of the next
example.

2.4.2. The harmonic oscillator

The Hamiltonian of a one dimensional har-
monic oscillator with a frequency ω can be written

H = p2

2m + mω2

2 q2. (23)

For convenience, we shall express this Hamilto-
nian in terms of holomorphic variables as follows:

a =
√
mω

2~

(
q + i

p

mω

)
, a =

√
mω

2~

(
q − i p

mω

)
,

(24)
in terms of which our Hamiltonian becomes

H = ~ωaa. (25)

The choice of a and a as our phase space vari-
ables instead of q and p requires a change of
variables in the Groenewold-Moyal star product
(Equation 12). The latter can be done using the
chain rule to go from (q, p) to (a, a). By doing so,
we find that the star product of functions of the
phase space (a, a) becomes

f ∗M g = f exp(1
2(←−∂a
−→
∂a −

←−
∂a
−→
∂a))g, (26)

where f and g are considered as functions of the
phase space (a, a).
Before solving the ∗-eigenvalue problem, we

would like to make an interesting remark: if we
calculate the star product of a, we find that

a ∗M a = aa− 1
2 , (27)

Hence, the Hamiltonian can be expressed in the
following form:

H = ~ω
(
a ∗M a+ 1

2

)
. (28)

Interestingly enough, this expression has the
same form as in the canonical formulation where
the Hamiltonian operator of the harmonic oscil-
lator is expressed as

Ĥ = ~ω
(
â†â+ 1

2

)
. (29)

This analogy underlines the fact that the non-
commutativity of operators in the canonical for-
mulation, which results in the vacuum energy
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~ω/2, is encoded in the non-commutative star
product.
Now, let us try to find the energy spectrum of

the harmonic oscillator. We shall proceed simi-
larly as we did in the case of a free particle. Let
Π be a ∗-eigenfunction with an energy E, i.e.

(H ∗M Π)(a, a) = EΠ(a, a). (30)
The crucial point that must not be forgotten

here is that the shift formula in terms of p and
q has to be rewritten in terms of the variables
(a, a) using the star product (Equation 26). This
transformation can be shown to result in

(f ∗M g)(a, a) = f(a+ 1
2∂a, a−

1
2∂a)g(a, a). (31)

As a consequence, the energy ∗-eigenvalue
problem can be expressed, using the last shift for-
mula, as follows:

~ω(aa− 1
4∂a∂a)Π +~ω(a∂a−a∂a)Π = EΠ. (32)

It is clear that the second term on the left
hand side is purely imaginary since Π is real-
valued. Hence, it should vanish. From this con-
straint, it follows that a∂aΠ = a∂aΠ. This means
that Π is only a function of the product aa, i.e.
Π(a, a) = ρ(aa). This can be shown by Taylor
expanding Π(a, a) in a and a and using the con-
straint a∂aΠ = a∂aΠ. For convenience, we define
u ≡ aa. Then, using the chain rule, the real part
solution becomes

(
u− 1

4∂u −
1
4u∂

2
u −

E

~ω

)
ρ(u) = 0. (33)

In the limit of large u, we expect that ρ de-
creases exponentially with some finite rate λ.
This is suggested by the definition of the Wigner
function since the states ψ(q) in the position
space representation are expected to decrease ex-
ponentially. Hence, ∂uρ/(u∂2

u)ρ ∼ λ/u � 1.
If we substitute ρ ∼ exp(−u/λ) in the limit of
large u, we find that λ = 1/2. Now setting
ρ(u) = exp(−2u)P (u) gives

[
1
4u∂

2
u + (1

4 − u)∂u +
(
E

~ω
− 1

2

)]
P (u) = 0. (34)

This differential equation can be solved by us-
ing a power series expansion P (u) = ∑∞

j=0 pju
j

which leads to the following recursion relation:

1
4(j + 1)2pj+1 =

(
j − E

~ω
+ 1

2

)
pj. (35)

In order to ensure that ρ(u) decreases expo-
nentially at infinity, P (u) must be a polynomial.
This means that there exists n such that pn+1 = 0.
This leads to the energy spectrum:

E = ~ω
(
n+ 1

2

)
. (36)

The resulting polynomials P (u) are Hermite
polynomials. Thus, as expected, we have recov-
ered the well-known result of the canonical for-
mulation. If we denote the ∗-eigenfunction cor-
responding to this energy by Πn, one can verify
that the ground state Π0 satisfies the property

a ∗M Π0 = Π0 ∗M a = 0. (37)

We can also check that a and a satisfy the prop-
erties

[a, a]∗ = 1 , [H, a]∗ = +~ωa , [H, a]∗ = −~ωa .
(38)

Hence, a and a can be called ladder functions
as they play the same role as the ladder operators
â and â† in the canonical formulation.

2.5. Further applications
Phase space quantization has several interest-

ing applications in physics. One example is quan-
tum optics where the Wigner function is essen-
tial to characterize interference phenomena, as fa-
mously done in the work of Nobel Laureat Serge
Haroche.10 It is also a natural language for quan-
tum decoherence and quantum chaos.11

3. Non-commutative Space in
Quantum Mechanics

3.1. Motivation
The idea of non-commutativity of space coordi-

nates was first proposed by Heisenberg7 and mo-
tivated by quantum field theory, where this idea
can serve as a tool for removing the short-distance
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divergences.12,13 The non-commutative behavior
of the coordinates can be described by

[X̂ i, X̂j] = θij , (39)

where (θij) is an antisymmetric tensor, whose
components are of the order of the Planck scale
squared.13
Analogously to the Heisenberg uncertainty re-

lation, which is due to the non-commutativity of
position and momentum, we can similarly assume
that there is an uncertainty relation for the spa-
cial coordinates. This means that space is only
defined by cells of the order of the Planck scale:

λp =
√
G~/c3 ≈ 1.6× 10−33 cm.

The idea behind the existence of a minimal
scale (Planck scale) can be put forward as fol-
lows: if we consider the Compton wavelength
λc = ~/Mc representing the minimum size of the
region in which a mass M can be localized, then
the Planck mass Mp is defined such that λc is at
the order of the corresponding Schwarzschild ra-
dius rs = 2GM/c2, i.e.

λc ∼ rs,

which implies that Mp ∼
√
~c/G. The Planck

scale is then defined as

λp = ~
Mpc

∼
√
G~
c3 ∼ rs = 2GMp

c2 . (40)

As a result, if we attempt to probe a distance
at the order of the Planck scale, we would need
to provide an energy equal to the Planck mass
inside this scale, which would trigger the forma-
tion of a micro black hole since the Planck scale
corresponds to the Schwarzschild radius of the
Planck mass Mp (Equation 40). In addition, no
further localization would be possible under the
Planck scale as the Heisenberg uncertainty prin-
ciple imposes a minimal delocalization length, i.e.
the Compton wavelength of the Planck mass Mp.
Thus, these two effects (both classical and quan-
tum) would prevent us from probing smaller dis-
tances with respect to the Planck scale.14 This in-
teresting observation puts forward the idea that
space has a minimal scale, which suggests it can
be non-commutative.

3.2. Illustration of a non-commutative
space
A very nice way to motivate space non-

commutativity in quantum mechanics is by con-
sidering strong constant magnetic field described
by a vector potential A = (Ax, Ay, Az).15 The lat-
ter field is applied to a charged particle confined
to the xy plane. The Lagrangian of such particle
reads

L = 1
2m(ẋ2 + ẏ2)+ e

c
(ẋAx + ẏAy)−V (x, y) . (41)

Here, we choose to work in the Landau gauge,
i.e. A = (0, Bx, 0), which implies that B =
(0, 0, B). If we work in the limit of a strong
magnetic field, then the kinetic term of the La-
grangian becomes negligible. The Lagrangian re-
duces to

L∞ = e

c
Bxẏ − V (x, y) . (42)

One can see that eBx/c can be identified with
the conjugate momentum of y. Thus, upon quan-
tization, the canonical Hilbert space operators x̂
and ŷ obey the commutation relation

[ŷ, eB
c
x̂] = i~1, (43)

[x̂, ŷ] = −i ~c
eB

1 . (44)

Hence, the two dimensional space is
quantized.15 This implies that it is defined
by elementary space cells whose surfaces are
at the order of ~c/(eB). The latter can be
interpreted as a quantization of the magnetic
flux within every single elementary cell, i.e.

Φ = B ‖[x̂, ŷ]‖ ∼ ~c
e
∼ Φ0, (45)

where ‖[x̂, ŷ]‖ denotes the typical surface of an
elementary cell and Φ0 = hc/2e is the quantum
magnetic flux.
In the next example, we will see how we

can implement the non-commutativity of space
in the Schrödinger equation and how non-
commutativity of space can suggest the presence
of a strong magnetic field.
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3.3. Modification of the Schrödinger
equation
In the approach of deformation quantization,

the quantum states are replaced by phase space
functions while substituting the usual product
with a non-commutative star product.
In the present instance, we consider quantum

states as functions in the position representa-
tion of the canonical approach, and we imple-
ment space non-commutativity, by replacing the
usual product by a non-commutative star prod-
uct of functions that depend on space coordinates
(x1, ..., xN). i.e. for two smooth functions f and
g labeled by space coordinates, the star product
on space is defined by

(f ∗ g)(x) = f exp( i2θ
ij←−∂i
−→
∂j )g(x), (46)

which is similar to the star product (Equation 12),
the only difference being that x is a spatial co-
ordinate and (θij) is a constant antisymmetric
N × N tensor. Thus, the only modification to
the Schrödinger equation

i~
∂ψ(x, t)
∂t

=
(
p̂2

2m + V (x̂)
)
ψ(x, t) (47)

is to replace V (x̂)ψ(x, t) by

V (x̂) ∗ ψ(x, t) = V (x̂−
ˆ̃p
2 )ψ(x, t), (48)

where ˆ̃pi = θij p̂j and p̂j = −i~∂j is the momen-
tum operator in the position representation.16
Now consider a one dimensional harmonic os-

cillator in a two dimensional non-commutative
space such that [x̂, ŷ] = θ1.17 The Hamilto-
nian of the one dimensional harmonic oscillator
H = p̂2

x/2m+ kx̂2/2 becomes

Ĥ∗ = p̂2
x

2m+k

2

(
x̂− θ p̂y2

)2
= p̂2

x

2m+ 1
2m∗ (p̂y − x̂eB∗)2 ,

(49)
where m∗ = 4/(kθ2) and eB∗ = 2/θ. Remark-
ably, the latter Hamiltonian is similar to the
Hamiltonian of a particle in two dimensions mov-
ing under the influence of a perpendicular mag-
netic field B∗. This means that the dynamics

of this harmonic oscillator in a non-commutative
two dimensional space is analogous to the motion
of a charged particle under the influence of a very
strong magnetic field.17 We have eB∗ = 2/θ and
the value of θ is expected to very small; typically
at the order of the Planck scale, this suggests that
B∗ is a very strong magnetic field. It turns out
that this interesting idea has a deep connection
with non-commutativity in string theory and the
effect of strong magnetic fields.18,19

3.4. Further applications

This exotic approach has many applications in
the realm of condensed matter physics as it suc-
cessfully explained the fractional quantum Hall
effect.20 In addition, this idea is a subject of in-
tense research in quantum gravity and also in
string theory where, roughly speaking, the char-
acteristic length of the vibrating strings is of the
order of the Planck scale where we expect that
space is non-commutative.13,19

4. Conclusion

In this note, we have presented a short intro-
duction to the phase space quantization formal-
ism as a deformation of the classical theory and
have seen how it is related to the canonical for-
mulation of quantum mechanics.2 We have also
applied the star product deformation in order
to account for space non-commutativity in the
Schrödinger equation, where the effect of space
non-commutativity has a close relation with the
effect of a strong magnetic field.
Nowadays, non-commutative gravity is a can-

didate theory of quantum gravity whose goal is
to unify the Einstein’s field equations with the
laws of quantum mechanics. This approach of
quantum gravity is based on the tools of non-
commutative geometry which are used to describe
the Planck scale.21
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